csv vs parquet vs avro vs orc데이터를 저장, 처리하기 위해 csv, parquet, avro, orc 등의 다양한 파일 유형을 사용한다. 각 유형에 따라 특징이 존재하며, 데이터 처리의 성능이 달라진다. 이에 따라 파일 유형이 데이터 처리 비용과 성능을 좌우할 수 있기에 상황에 맞는 것을 선택해 활용하는 것이 중요하다. 그중에서 가장 알려져 있고, 자주 사용되는 유형인 csv, parquet, avro, orc 유형의 개념과 장단점, 유스케이스를 알아보자.대용량 데이터 저장 = 높은 비용긴 읽기/쓰기 시간 = 느린 시스템, 높은 연산 능력높은 연산 능력 = 비용 증가csv (Comma-Separated Values)# csv 파일 예시 (test.csv)timestamp,produ..
Spark 내부동작Spark 파일 포맷작업에 맞는 파일 최적화 필요Unstructured (비구조화) : TextSemi-structured (반구조화) : json, xml, csvStructured (구조화) : parquet, avro, orc, sequencefileSpark의 주요 파일 포맷Splittable : HDFS 데이터 블록의 Partition으로 바로 올라갈 수 있는지 여부Human readable : 사람이 읽을 수 있는지 여부Nested structure support : subfield를 지원하는지 여부Schema evolution : 스키마가 다른 데이터끼리 사용 가능한지 여부ParquetSpark의 기본 파일 포맷Hybrid Storage 방식하나의 데이터 블록은 하나의 Ro..